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Abstract

The de facto standard cost function has been used heretofore to characterize the performance of pulses designed using optimal
control theory. The freedom to choose new, creative quality factors designed for specific purposes is demonstrated. While the meth-
odology has more general applicability, its utility is illustrated by comparison to a consistently chosen example—broadband exci-
tation. The resulting pulses are limited to the same maximum RF amplitude used previously and tolerate the same variation in RF
homogeneity deemed relevant for standard high-resolution NMR probes. Design criteria are unchanged: transformation of Iz fi Ix
over resonance offsets of ±20 kHz and RF variability of ±5%, with a peak RF amplitude equal to 17.5 kHz. However, the new cost
effectively trades a small increase in residual z magnetization for improved phase in the transverse plane. Compared to previous
broadband excitation by optimized pulses (BEBOP), significantly shorter pulses are achievable, with only marginally reduced per-
formance. Simulations transform Iz to greater than 0.98 Ix, with phase deviations of the final magnetization less than 2�, over the
targeted ranges of resonance offset and RF variability. Experimental performance is in excellent agreement with the simulations.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The nearly ideal performance of pulses obtained
using optimal control theory [1–6] provides a strong
inducement for developing further the capabilities of
this very general and flexible methodology. The goal is
to characterize the performance of optimal control algo-
rithms for use in general NMR applications. Excitation
is a particularly simple example that allows a clear delin-
eation between the effects of optimal control and the
application. Requiring dual compensation for RF inho-
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mogeneity/miscalibration and chemical shift variation, a
historically difficult challenge for other methodologies
[7–19], provides significant additional relevance.

In our initial algorithm for implementing the theory,
the maximum amplitude of the RF controls was con-
strained indirectly—a given pulse length (2 ms) and con-
vergence factor for terminating the algorithm resulted in
a maximum pulse amplitude of 17.5kHz. This first
application of optimal control to broadband excitation
[4] was shown to excite transverse magnetization of
nearly constant phase over resonance offsets of 40kHz
with up to 4dB tolerance to RF miscalibration. Direct
control of peak RF amplitude was subsequently pro-
vided by clipping the RF at a desired peak value, forcing
the optimal control algorithm to search in a different
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direction whenever it obtained an amplitude that ex-
ceeded the limit. This allowed us to reduce pulse length
to 500 ls and yet still significantly improve pulse perfor-
mance over the targetted ranges of RF and resonance
offset variation [5].

We now consider the effect of modifying the cost
function used to characterize the performance of a pulse
in the optimization. Previously, this cost was measured
by projecting the magnetization vector at the end of
the pulse onto the target state. This projection of a final
state achieved by the controls onto the target state is
very general. For example, the states could be Schrö-
dinger wave functions in a different type of application.
But we note that projection (and a closely related form,
the magnitude of the difference between the final state
and the target) is virtually the only cost function em-
ployed in a wide range of optimization protocols. Max-
imizing this projection minimizes the cone angle between
the final magnetization and the target state. This partic-
ular cost function therefore requires small cone angles to
ensure the phase of the final magnetization in the trans-
verse plane has the same small value, which means the
alignment between target and final states has to be al-
most perfect. The level of perfection achieved so far is
not possible if the pulse length is too short. However,
the residual z component of the final magnetization
has no effect on the phase of the NMR spectrum. One
could therefore anticipate that allowing a larger cone
angle in the z direction while maintaining the small cone
angle in the transverse plane might provide acceptable
performance with shorter pulses. The utility of this
new approach is demonstrated specifically by the design
of a 125 ls broadband excitation pulse, compensated for
RF inhomogeneity, with outstanding performance char-
acteristics. More importantly, we emphasize the wider
utility of alternative cost functions in general applica-
tions of optimal control theory.
2. Theory and methods

Details of the optimal control procedure, as it relates
to broadband excitation in NMR, are discussed in [4].
Further general information on broadband excitation
[7–19], optimal control theory [20–23], and its use in
NMR [1–3] is provided in the references. In this section,
we consider the modifications to our previous treatment
associated with the new cost function.

2.1. Optimal control theory: a new cost function for

excitation

During the time interval [t0, tp], we seek to transfer
initial magnetization Mðt0Þ ¼ ẑ to the target final state
F ¼ x̂ for a specified range of chemical-shift offsets
and a desired degree of tolerance to RF inhomogeneity
or miscalibration. The trajectories M (t) are constrained
by the Bloch equation

_M ¼ xe �M: ð1Þ
The effective RF field xe in angular frequency units
(rad/s) can be written in the rotating frame as

xe ¼ x1ðtÞ½cos/ðtÞx̂þ sin/ðtÞŷ� þ DxðtÞẑ; ð2Þ
which encompasses any desired modulation of the
amplitude x1, phase /, and frequency offset Dx of the
pulse. As in our previous work, only amplitude and
phase modulation are considered, since typical spec-
trometers implement frequency modulation as a phase
modulation, with Dx (t) = d/(t)/dt. The value of Dx is
therefore time-independent, and gives the chemical shift
of the irradiated spin. Constraints on the optimization
can be effectively incorporated into the formalism using
the technique of Lagrange multipliers (see for example,
[24]). The vector Bloch equation thus introduces a vec-
tor Lagrange multiplier k. Some suitable measure of
pulse performance, the cost function U, is then defined
as the object of the optimization. The necessary condi-
tions that must be satisfied at each time for the cost to
be optimized are

_M ¼ xe �M; Mðt0Þ ¼ ẑ; ð3Þ

_k ¼ xe � k; kðtpÞ ¼ oU=oM; ð4Þ

M � k ¼ 0: ð5Þ

Thus, both M and k obey the Bloch equation. Since
xe (t) controls the evolution of M (t), the goal of finding
the optimum trajectory is the same as finding the opti-
mal RF sequence to apply to the sample. The particular
choice of the dot product U = M (tp) Æ F used previously
for the cost quantifies the degree to which M (tp) = F
and gives k(tp) = F. As noted previously [4], there is a
simple geometrical interpretation for this case. A se-
quence which transforms M (t0) forward in time to the
desired target state F therefore transforms k (tp) = F
backwards in time to M (t0). For the optimal pulse, we
then have Mopt (t) = kopt (t), which satisfies the station-
ary condition given by Eq. (5).

This cost defines a cone of possible final states M (tp)
centered on the x axis with vertex at the origin, all
weighted equally.Wewere forced to obtain small cone an-
gles to ensure the phase in the transverse plane has the
same small value, which means the excitation efficiency
has to be almost perfect. If, for example, Mx = 0.95M0,
which is a reasonably high excitation efficiency, an unac-
ceptable phase of �18� results if the final magnetization
lies entirely in the transverse plane. Changing the cost so
that it favors final states oriented in the xz plane would al-
low Mx = 0.95M0 with a transverse (i.e., spectral) phase
of 0�. This could be achieved by minimizing the magni-
tude of the residual vector, iM � Fi2, with appropriate
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weighting for each component. We therefore consider a
cost of the form

U ¼
X3

i¼1

aiðMi � F iÞ2: ð6Þ

For the desired target along the x axis, a weight of zero
for the z component and equal weights for the other two
components allows the optimal control algorithm the
flexibility to do anything it wants with the z component
as long as Mx is maximized and My minimized.

We now have, according to Eq. (4)

kiðtpÞ ¼ 2aiðMi � F iÞ ð7Þ
with the factor of 2 representing a scaling that can be ab-
sorbed in the weights ai. Since k (tp) now depends on the
final state M, which, in turn, depends on the RF pulse
applied, a physical interpretation for the optimal control
process is not as straightforward as for the previous cost
function. Nonetheless, the procedure is still the same—
M and k obey the Bloch equation, and they can be
calculated at each time for a given pulse. Mopt (t) will
satisfy the stationary condition of Eq. (5) when
kopt (t) = 0. For a nonoptimal pulse, M · k at each time
point of the two trajectories gives the proportional
adjustment to make in the control field xe (t).

2.2. Numerical algorithm

There is no change to the basic algorithm for optimiz-
ing the cost and incorporating the RF clipping proce-
dure specifying that the amplitude at each time, x1 (t),
be no greater than a chosen maximum amplitude xmax.
It is provided here for convenience:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Calculate M (tp) · k (tp) and evolve it backwards in

time.
(iv) xðkþ1Þ

e ðtÞ ! xðkÞ
e ðtÞ þ � ½MðtÞ � kðtÞ �:

(v) For any x1 (t) > xmax, set x1 (t)fi xmax.
(vi) Repeat steps (ii)–(v) until a desired convergence of

U is reached.

The RF clipping in step (v) is implemented by adjust-
ing (x1)x and (x1)y to satisfy the constraint on maximum
RF amplitude without changing the phase of x1. Addi-
tional details concerning each step and adjustments re-
lated to the demands of broadband excitation are
described in [4,5].
3. Results and discussion

The emphasis of this work is the continued develop-
ment of productive modifications to the basic optimal
control algorithm. We feel this provides the most gen-
eral applicability of the methodology. Since productivity
is relative and assessed by comparison, we first summa-
rize our previous results. We then provide steps leading
to the current result, including details relevant for
researchers interested in pursuing their own applica-
tions. The results and their implications conclude the
section.

In all the pulses pertinent to the present discussion,
optimal control was applied over resonance offsets of
±20 kHz, with a variation of ±5% in the nominal RF
calibration. The pulses were typically digitized in
0.5 ls increments. In developing our first broadband
excitation pulse [4], there was no explicit control of the
peak RF amplitude. The pulse length and convergence
parameter for terminating the algorithm were set suffi-
ciently large that acceptable performance was obtained
without exceeding the power limits of typical 13C
probes. We obtained a 2 ms pulse with maximum RF
amplitude equal to 17.5 kHz capable of transforming
99.5% of initial z magnetization, M0, to within 4� of
the x axis over the targetted RF and offset ranges. By
implementing the clipping algorithm [5], we then ob-
tained a 500 ls pulse (17.5 kHz peak RF) with the same,
almost perfect, excitation efficiency and even smaller
residual phase of less than 2� over the optimized ranges.
Moreover, the performance of this second pulse exceeds
the design criteria, providing an outstanding 99% excita-
tion efficiency over almost a ±15% variation in nominal
RF, with the maximum phase of the final magnetization
still less than �4� over this larger RF range, operating
over the same 40 kHz bandwidth.

We next searched for a 125 ls pulse. Using a random
initial waveform, as in the previous procedures, and the
original cost function, M Æ F, provided a pulse giving at
least 95% excitation with phase less than 5� over the opti-
mization window. This is fairly good performance, but it
is rather poor compared to our previous pulses.We there-
fore tried a new method, in the expectation that it might
give the algorithm additional flexibility in finding an opti-
mal solution. We first used a random initial waveform,
digitized in 4000 points, together with the original cost
function to obtain a 125 ls pulse with an average excita-
tion of 99.6% over the targetted optimization ranges.
Although this pulse, at �30 ns per time step, may not
be very practical from the standpoint of actual implemen-
tation, it provides the seed for finding pulses with reduced
digitization. Every other point of this pulse is used as the
initial input to the algorithm to generate a pulse with half
the digitization. Every other point of this resulting pulse
is then used as a new initial input. Proceeding in this man-
ner, we obtained a 250-point 125 ls pulse maintaining the
same value of 99.6% for the average excitation. However,
this average includes values as low as 98% and phases as
high as 12� in the optimization window.

We also tried using the 500 ls BEBOP as a ‘‘breeder’’
for shorter pulses. As before, we used every other point



Fig. 1. Three different versions of a 125 ls broadband excitation pulse,
optimized to perform over resonance offsets of ±20 kHz and a
variation of ±5% in the nominal RF calibration, are plotted as
amplitude (upper panel) and phase (lower panel), illustrating the
progression in their development: (A) a 250-point pulse derived using
the original cost function U =M Æ F of [4,5] (B) a 250-point pulse
derived using the new cost function of Eq. (6) (C) 16-point pulse
derived using the new cost function. All three pulses provide excellent
performance within the optimization window, but the best perfor-
mance is given by pulse (B) (>98% excitation within 2� of the x axis; see
Fig. 2). The phase for the transverse magnetization produced by pulse
(A) can be as high as 10� (see Fig. 3). Pulse (C) provides almost equal
performance to pulse (B) (>97% excitation within 3� of the x axis;
see Fig. 4). The maximum RF amplitude was limited to 17.5 kHz
by clipping whenever the amplitude exceeded this value, as described
in [5].
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of this pulse as the initial waveform, but also shortened
the pulse length to 250 ls, still employing the original
cost function. Somewhat surprisingly, this new pulse
provides almost the same, practically ideal, performance
as the 500 ls pulse. If we continue in this manner,
using every other point of the 250 ls pulse to generate
a 125 ls pulse, we find it provides better than 98% exci-
tation over the RF and offset optimization ranges, but
the phase can be as high as 10� at the lower extreme
of the RF range.

Although the performance of the two 125 ls pulses
obtained using our original cost function is very good,
better phase performance would be desirable, if possible.
We therefore adopted the new cost function of Eq. (6),
weighted according to a = (1,1,0), as discussed in the
previous section. These values for the weights gave the
best performance compared to an assortment of other
possibilities that were tried, but our list was by no means
exhaustive, and other combinations may be useful. Both
of the 125 ls pulses obtained to that point were tried as
initial waveforms, as well as many others. The 125 ls
descendant of the 500 ls pulse, as just described, ulti-
mately generated the best performance when fed to the
algorithm employing the new cost function. We also
used this new 125 ls pulse (generated using the new cost
function) as input to our procedure for developing
pulses of decreased digitization to obtain a 125 ls pulse
digitized in 7.8 ls increments (16 time steps).

The amplitude and phase of these 125 ls BEBOP
pulses are plotted as a function of time in Fig. 1 for com-
parison with our earlier pulses. The somewhat antici-
pated outcome is that shortening the pulse length
sufficiently in conjunction with the clipping algorithm
has finally forced the optimal control procedure to max-
imize RF amplitude, approaching a pure phase modu-
lated pulse. The progression in pulse development is
shown for the original cost function (Fig. 1A), the new
cost function (Fig. 1B), and decreased digitization using
the new cost (Fig. 1C).

The theoretical performance of the pulse in Fig. 1B,
assuming simple Bloch equation evolution of the irradi-
ated spins (as in the optimization procedure), is illus-
trated in Fig. 2. Contours of x magnetization, Mx, are
plotted in the upper panel as functions of resonance off-
set and RF inhomogeneity. The phase of the excited
magnetization is shown similarly in the lower panel.
Over the targetted ±5% variation in the nominal RF
delivered by the coil and resonance offsets of ±20 kHz,
the excited magnetization Mx is better than 98% of the
initial z magnetization, M0, with a phase of less than
2�. A similar plot (not shown) for the 16-point pulse
of Fig. 1C shows 97% excitation with phase of less than
3� over these same ranges of RF and offset variation.

Magnetization in the range 0.97–0.98 M0 would have
a phase of 12–14� if it was entirely in the transverse
plane, so the new cost function is highly effective. It pro-



Fig. 2. Simulated performance of the optimized 125 ls pulse of Fig.
1B. The dotted rectangle defines the window over which the optimi-
zation was performed. The magnitude Mx (upper panel) and phase U
(lower panel) of the excited magnetization is plotted as a function of
resonance offset and RF field B1, represented as a fraction of the
nominal field B0

1. Contour lines displayed for Mx are [0.98,0.95], and
those for the phase of the excited magnetization are [2�, 4�].

Fig. 3. Distribution of final magnetization in the y–z plane resulting
from application of: (A) the pulse of Fig. 1A, derived using the original
cost function, M Æ F, and (B) the pulse of Fig. 1B, derived using the
new cost function, Eq. (6). The new cost produces a much narrower y
distribution for the price of a small increase in width of the z

distribution.
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vides the capability to allow slightly reduced excitation
efficiency without increasing the phase to unacceptable
levels. A more precise comparison is provided in Fig.
3, showing the location of the final magnetization in
the y–z plane for both the original and the new cost
functions. The new cost narrows the y distribution sig-
nificantly at the expense of a small increase in width of
the z distribution.

Fig. 4 shows the experimental performance of the
pulses in Figs. 1B and C. They are in excellent agree-
ment with the simulations. The calibrated pulse at
0 dB (17.5 kHz peak RF) and pulses applied with atten-
uations of ±0.5 dB (�5.6%, +5.9%) relative to the cali-
brated RF values match the nearly ideal performance
discussed previously for the simulations. At ±1 dB
(�10.9%, +12.2%), the pulses still provide tolerable per-
formance, with Mx > 0.95 and a phase less than 4� with-
in the 40 kHz offset range.

In contrast to the longer pulses developed previously,
the pulse length is now sufficiently short that the best
performance of these pulses does not extend significantly
beyond the optimization window. A detailed analysis of
both excitation and inversion efficiency as a function of
pulse length [6] shows a steep drop in performance be-
low a minimum pulse length (depending on the param-
eters defining the optimization), and this is indeed the
case here. The best 100 ls pulses we obtain provide,
respectively, 95% excitation with 6� phase and 93% exci-
tation with 2–3� phase. We also obtained a 62.5 ls pulse
giving 90% excitation with 3� phase.

The benchmark for comparing pulse performance in
previous work [4,5] required at least 95% excitation effi-
ciency and a phase roll of no more than 4� over the res-
onance offset range. We used the standard definition for
figure-of-merit (FOM) as the total excitation bandwidth
satisfying the benchmark divided by the peak RF ampli-
tude. The 100 ls BEBOP thus represents a conservative
lower limit on pulse length for achieving FOM = 2.3
with tolerance of ±5% in RF calibration.



Fig. 4. Excitation profiles for the residual HDO signal in a sample of
99.96% D2O are displayed as a function of resonance offset and RF
power levels applied to the sample using (A) the 250-point 125 ls pulse
of Fig. 1B and (B) the 16-point 125 ls pulse of Fig. 1C. Power levels
were varied in 0.5 dB increments by adjusting attenuation relative to
the calibrated pulse at 0 dB, resulting in peak RF amplitudes of
19.6 kHz (�1 dB), 18.5 kHz (�0.5 dB), 17.5 kHz (0 dB), 16.5 kHz
(0.5 dB), and 15.6 kHz (+1 dB). The solid line at the top of each set of
profiles is the theoretical performance of the pulse, plotted, as in Fig. 2,
as the value of Mx after excitation of initial z magnetization, M0. The
experimental performance of both pulses is excellent, producing
excitation Mx > 0.95M0, over ±20 kHz for RF variability within
±1 dB (�10.9%, +12.2%) of the calibrated value. For the ±5% RF
variation targetted in the optimization, pulse (A) transforms >98% of
the initial z-magnetization to within 2� of the x axis, while pulse (B) has
an excitation efficiency of >97% with phase <3�.
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4. Experimental

Experimental excitation profiles were implemented
on a Bruker DMX 900 spectrometer equipped with
modern SGU units for RF control and linearized ampli-
fiers. A sample of 99.96% D2O was doped with CuSO4

to a final T1 relaxation time of �500 ms. To reduce
effects of B1-field inhomogeneity, approximately 40 ll
of this solution was placed in a Shigemi limited volume
tube. The maximum RF amplitude was calibrated using
a square shaped pulse. Offset profiles were obtained
by varying the offset of the shaped pulses from
�27,000 Hz to 27,000 Hz in steps of 1000 Hz. To
also monitor the B1-field dependence of the pulses, the
experiments were repeated with ±0.5 and ±1 dB attenu-
ation relative to the calibrated RF amplitude, corre-
sponding to maximum RF fields of 15,597, 16,521,
17,500, 18,537, and 19,635 Hz. The results are shown
in Fig. 4 with the theoretical magnitude ofMx after exci-
tation drawn on top of the individual offset profiles. The
experimental data provide an excellent match with
theory.

The offsets were implemented by superimposing a lin-
ear phase ramp on the shaped pulse. For pulses digitized
in sufficiently small increments, the phase increment per
time step is small, so this smoothly changing phase pro-
vides a good approximation of a constant frequency off-
set. However, for the 16-point 125 ls pulse of Fig. 1C,
the phase increment per time step gives too large a jump
to accurately represent the frequency offset. Digitization
artifacts are not negligible compared to pulses digitized
in much smaller time steps. The 16-point pulse was
therefore represented using 256 points, allowing the
phase ramp to be more accurately realized. We com-
mented in [5] that a 500 ls pulse derived with reduced
digitization displayed slight differences between theory
and experiment, especially at high frequency offsets.
We suggested that the differences between simulation
and experiment were likely due to the implementation
of the offset profiles. The current implementation elimi-
nates those differences.
5. Conclusion

The cost function provides the necessary measure for
assessing the degree to which the goals of an optimiza-
tion have been met. Although a standard cost function
is typically employed in the field of optimization, it is
not the only possibility. The flexibility one has in tailor-
ing the cost function to a specific application has been
illustrated using broadband excitation as an example.

A 125 ls pulse was designed by changing the cost
function used in our previous optimal control proce-
dures [4,5]. The new cost gives preference to small resid-
ual z components in the excited magnetization over
residual phase in the transverse plane. This enables the
algorithm to find a nearly ideal solution with a fourfold
reduction in pulse length compared to the original cost,
using the same peak RF. The pulse, digitized in 0.5 ls
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increments, has a peak RF amplitude of 17.5 kHz and is
tolerant to a range of RF inhomogeneity (±0.5 dB) that
is more than sufficient for conventional high resolution
NMR probes. It produces final transverse magnetization
of essentially uniform phase over resonance offsets of
40 kHz. Using the same design criteria, we also derived
a 125 ls pulse with significantly reduced digitization (16
time-steps, 7.8 ls per RF increment) which exhibits sim-
ilar experimental performance. The pulse length of
125 ls is sufficiently short that the algorithm forces the
RF to its maximum allowed value of 17.5 kHz at almost
all time increments, effectively generating a constant-
amplitude, phase-modulated pulse.

As noted, the primary objective of this work is the
continued development of productive algorithms that
can be applied to general optimal control applications.
Excitation is a particularly simple, first example that al-
lows a clear delineation between the effects of optimal
control and the application, demonstrating the large po-
tential of such tailored optimization methods. Pulses ob-
tained to date can be downloaded in Bruker and Varian
formats from http://www.org.chemie.tu-muenchen.de/
people/bulu/.
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